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Abstract--This paper evaluates the performance both of some texture measures which have been success- 
fully used in various applications and of some new promising approaches proposed recently. For classifica- 
tion a method based on Kullback discrimination of sample and prototype distributions is used. The 
classification results for single features with one-dimensional feature value distributions and for pairs of 
complementary features with two-dimensional distributions are presented 
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l. I N T R O D U C T I O N  

Texture is an important characteristic for the analysis 
of many types of images. A wide variety of measures for 
discriminating textures have been proposed, c1'2~ Com- 
parative studies to evaluate the performance of some 
texture measures have been carried out by Weszka 
et al., ~3~ Du Bufet al. ~4~ and Ohanian and Dubes, ~s) for 
example. 

Most of the approaches to texture analysis quantify 
the texture measures by single values (means, variances 
etc.). These values are used as elements of feature 
vectors in performing classification. In this way much 
important information contained in the distributions 
of feature values might be lost. Some earlier studies 
also suggest that distributions of joint occurrences of 
pairs of features give better results than distributions of 
single features on their own. 

This paper evaluates the performance both of some 
texture measures which have been successfully used 
in various applications and of some new promising 
approaches proposed recently. For classification a 
method based on Kullback discrimination of sample 
and prototype distributions is used. 16) The classifica- 
tion performances for single features with one-dimen- 
sional feature value distributions and for pairs of 
complementary features with two-dimensional dis- 
tributions are evaluated. Two different types of data 
sets are used in experiments: a set of Brodatz's images, 
and images used in a recent comparative study by 
Ohanian and Dubes. tS) Our study provides one of the 
largest comparison of texture measures presented in 
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the literature and completes the study carried out by 
Ohanian and Dubes. 

2. T E X T U R E  M E A S U R E S  U S E D  I N  T H I S  S T U D Y  

2.1. Gray-level difference method 

A class of local properties based on differences 
between pairs of gray levels or of average gray levels 
has been sometimes used in texture analysis, t3,7~ Our 
feature set contained four measures based on the gray- 
level difference method: DIFFX and DIFFY are histo- 
grams of absolute gray-level differences between 
neighboring pixels computed in horizontal and verti- 
cal directions, respectively, while DIFF2 accumulates 
absolute differences in horizontal and vertical direc- 
tions and DIFF4 in all four principal directions, res- 
pectively, in a single histogram, providing rotation 
invariant texture measures. 

2.2. Laws' texture measures 

The "texture energy measures" developed by 
Laws ts) or related measures developed by others have 
been used in various applications. Four Laws' 3 x 3 
operators were considered in this study. L3E3 and 
E3L3 perform edge detection in vertical and horizon- 
tal directions, respectively, and L3S3 and $3L3 are line 
detectors in these two orthogonal directions. 

2.3. Center-symmetric covariance measures 

Laws' and other related studies of texture analysis 
suggest that many natural and artificial textures are 
measurably "loaded" with distributions of various spe- 
cific local patterns of texture having these abstract 
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symmetrical forms. Moreover, to measure the local 
"loading" of gray-level symmetric (positive) or anti- 
symmetric (negative) texture, we have only to compute 
local auto-covariances or auto-correlations of center- 
symmetric pixel values of suitably sized neighbor- 
hoods. In a recent study of Harwood et al., t6) a set of 
related measures was introduced, including two local 
center-symmetric auto-correlation measures, with lin- 
ear (SAC) and rank-order versions (SRAC), together 
with a related covariance measure (SCOV). We ap- 
plied these three measures in the present work. 

2.4. Local binary patterns 

Recently, Wang and He t9) introduced a new model 
of texture analysis based on the so-called texture unit, 
where a texture image can be characterized by its 
texture spectrum. A texture unit (TU) is represented by 
eight elements, each of which has one of three possible 
values (0,1, 2) obtained from a neighborhood of 3 x 3 
pixels. In total, there are 38-- 6561 possible texture 
units describing spatial three-level patterns in a 3 x 3 
neighborhood. The occurrence of distribution of tex- 
ture units computed over a region is called the texture 
spectrum. 

In this study we propose to use a two-level version of 
the method of Wang and He. It provides a robust way 
for describing pure local binary patterns (LBP) in 
a texture. In the two-level version, there are only 
28= 256 possible texture units instead of 6561. In 
the binary case, the original 3 x 3 neighborhood 
[Fig. l(a)] is thresholded by the value of the center 
pixel. The values of the pixels in the thresholded 
neighborhood [Fig. l(b)] are multiplied by the weights 
given to the corresponding pixels [Fig. 1(c)]. The result 
for this example is shown in Fig. l(d). Finally, the 
values of the eight pixels are summed to obtain the 
number (169) of this texture unit. The LBP method is 
a gray-scale invariant and can be easily combined with 
a simple contrast measure by computing for each 
neighborhood the difference of the average gray level 
of those pixels which have the value 1, and those which 
have the value 0, respectively [see Fig. l(b)]. 

2.5. Complementary feature pairs 

In most cases a single texture measure cannot pro- 
vide enough information about the amount and spa- 
tial structure of local texture. Better discrimination of 
textures should be obtained by considering joint oc- 
currences of two or more features. As an example of 
this kind of approach, the spatial gray-level depend- 
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Fig. 1. Two-level version (LBP) of the texture unit. 

ence method (co-occurrence method) estimates the 
joint gray-level distribution for two gray levels located 
at a specified distance and angle. Shen and Bie "°) 
considered the use of gradient magnitude and direc- 
tion, gray level and gradient direction, and gray level 
and gradient magnitude, respectively, jointly in their 
feature frequency matrix (FFM) scheme. 

Our primary goal was to find pairs of such features 
which provide complementary information about tex- 
tures, using a two-dimensional Kullback classification 
scheme. Complementary features should provide more 
or less uncorrelated texture information. 

The center-symmetric covariance measures are ab- 
stract, measuring covariances of any local center- 
symmetric patterns. They provide robust information 
about the amount of local texture, but very little about 
exact local spatial patterns. This immediately suggests 
that we should consider texture analysis of pure spatial 
patterns, which would complement the analysis. The 
local binary patterns (LBP) were chosen for this pur- 
pose. Two different features were combined with LBP. 
LBP/C is based on the contrast measure introduced 
earlier and the other pair is LBP/SCOV. The contrast 
and SCOV measures were quantized to have only eight 
values to make sure that the two-dimensional feature 
histograms would not become too sparse. 

Laws' masks chosen for this study perform edge or 
line detections in horizontal or vertical directions. 
These kinds of patterns can occur, however, in arbit- 
rary directions, which suggests that a joint use of edge 
or line detectors in the orthogonal directions should be 
considered. In a similar way, difference histograms are 
usually computed for displacements in horizontal or 
vertical directions, and a joint use of these orthogonal 
directions should provide useful information for tex- 
ture discrimination. 

The pair L3E3/E3L3 corresponds edge detection, 
L3S3/S3L3 line detection and DIFFX/DIFFY abso- 
lute gray-scale differences in the two orthogonal direc- 
tions, respectively. DIFFY/SCOV combines absolute 
gray-scale differences in the vertical direction with the 
center-symmetric covariance measure SCOV. GMAG/ 
GDIR is using gradient magnitudes and directions 
obtained by a 3 x 3 Sobel edge operator. All of these 
feature combinations were quantized into 32 x 32 bins. 

3. NEAREST-NEIGHBOR CLASSIFICATION USING 
KULLBACK DISCRIMINATION 

In experiments with Image Set I, the classification of 
a sample was based on comparing the sample distribu- 
ton of feature values to several pre-defined model 
distributions of feature values with known true class 
labels. The sample was assigned the label of the model 
that optimized Kullback's minimum cross-entropy 
principle [equation (1)l. ¢11) Here s and m are the 
sample and model distributions, n is the number of 
bins and s t, m~ are the respective sample and model 
probabilities at bin i. This (pseudo-) metric measures 
likelihoods that samples are from alternative texture 
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classes, based on exact probabilities of feature values of 
pre-classified texture prototypes. 

D(s:m)= ~ s i l o g  s i .  (1)  

i= 1 mi  

The model distribution for each class was obtained 
by scanning the gray-scale corrected 256 x 256 texture 
image with the local texture operator. The distribu- 
tions of local statistics were divided into histograms 
having a fixed number of bins; hence, the Kullback's 
cross-entropy measure had the same number of de- 
grees-of-freedom for every pairing of a sample and 
a model. The number of bins used in quantization of 
the feature space plays a crucial role. Histograms with 
too modest a number of bins fail to provide enough 
discriminative information about the distributions. 
However, since the distributions have a finite amount 
of entries, it does not make sense to go to the other 
extreme. If histograms have too many bins, and the 
average number of entries per bin is very small, histo- 
grams become sparse and unstable. In most of our 
experiments, histograms with 32 bins were used. This 
corresponds to an average number of 32 entries per bin 
for samples 32 x 32 in size and eight entries per bin for 
sample 16 × 16 in size, respectively. 

The feature space was quantized by adding together 
feature distributions for every single model image in 
a total distribution, which was divided into 32 bins 
having an equal number of entries. Hence, the cut 
values of the bins of the histograms corresponded to 
3.125 (100/32) percentile of the combined data. Deriv- 
ing the cut values from the total distribution and 
allocating every bin the same amount of combined 
data guarantees that the highest resolution of the 
quantization is used where the number of entries is 
largest and vice versa. It should be noted that the 
quantization of feature space is only required for tex- 
ture operators with a continuous-valued output. Out- 
put of some discrete operators like LBP, where two 
successive values can have totally different meaning, 
does not require any further processing; operator out- 
puts are just accumulated into a histogram. The empty 
bins were set to one. 

In experiments with Image Set II, a single model 
distribution for every class was not used as with the 
Brodatz's images. Every sample was in its turn classi- 
fied using the other samples as models, hence the 
leave-one-out approach was applied. The sample was 
assigned the label of the model that minimized two- 
way test-of-independence [-equation (2)] that is 
a modification from Kullback's criterion: I~ 2~ 

G = 2  o -- o 
i=1 -I I s , m X i = l  / \ i = 1  

[( .  ) )]) + E ~, f ,  log fi , (2) 
s,m i= 1 \ s , m  i= 

where s, m are the two texture samples (test sample and 
model), n is the number of bins and fl is the frequency 
at bin i. 

To compare distributions of complementary feature 
pairs, metrics D and G were extended in a straightfor- 
ward manner to scan through the two-dimensional 
histograms. If quantization of the feature space was 
required, it was done separately for both features using 
the same approach as with single features. Therefore, 
the two-dimensional distribution was likely to have 
bins with zero entries. Regarding the stability of the 
classification process it was important to handle these 
empty bins correctly. Setting every empty bin to one 
turned out to be a good solution. 

4. EXPERIMENTS WITH IMAGE SET I 

In these experiments, nine classes of textures--  
grass, paper, waves, raffia, sand, wood, calf, herring- 
bone and wool - - taken  from Brodatz's album "s~ were 
used (Fig. 2). The texture images were corrected by 
mean and standard deviation in order to minimize 
discrimination by overall gray-level variation, which is 
unrelated to local image texture. The correction was 
applied to the whole 256 x 256 images instead of 
correcting every sample window separately. The mean 
gray value of each corrected image was set to 256 and 
the standard deviation to 40. 

The test samples were obtained by randomly sub- 
sampling the original texture images. 1000 subsamples 
of 32 x 32 or 16 x 16 pixels in size were extracted 
from every texture class, resulting in a classification of 
9000 random samples in total. When classifying a par- 
ticular sample, the sample distribution was subtracted 
from the model distribution of the true class of this 
sample so that an unbiased error estimate was ob- 
tained. 

Table 1 shows the classification error rates for 
32 x 32 and 16 x 16 samples from nine 256 × 256 im- 
ages representing nine texture classes. 

The best performance is obtained for the local binary 
pattern (LBP) feature. The difference histogram fea- 
tures also performed very well. The covariance 
measures perform better than Laws' measures, but the 
error rates for the 16 x 16 samples are quite poor for 
these two related approaches. This indicates that for 
good results the covariance and Laws' measures re- 
quire larger sample sizes than the other approaches 
considered here. 

Table 2 presents the results for pairs of comple- 
mentary measures. LBP/C achieves very low error 
rates. The results for LBP/SCOV are almost as good 
and very good results are also obtained with 
D I F F X / D I F F Y  and L3S3/S3L3 features. The poorest 
performance was obtained for GMAG/GDIR.  After 
comparing Table 1 and 2 we can conclude that pairs of 
complementary features give significantly better re- 
sults than single features. The small error rates ob- 
tained for small 16 x 16 samples demonstrate the 
power of our classification scheme. 
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grass (D9) paper (D57) waves (D38) 

raffia (D84) sand (D29) wood (D68) 

calf (D24) herringbone (D17) wool (D19) 

Fig. 2. Brodatz textures. The white rectangles in grass demonstrate the size of the test samples, 32 × 32 and 
16 x 16 pixels, respectively. 

Table 1. Error rates for single features with Image 
Set I 

Feature 32 × 32 16 × 16 

LBP 
D1FFX 
DIFFY 
DIFF2 
DIFF4 
L3E3 
E3L3 
L3S3 
$3L3 
SCOV 
SAC 
SRAC 

2.30 12.52 
3.04 14.31 Table 2. Error rates for pairs of features with Image Set I 
3.30 12.84 
8.43 13.50 Features No. of bins 32 x 32 16 × 16 
8.73 14.32 

19.82 42.46 LBP/C 256 × 8 0.19 1.90 
17.62 39.58 LBP/SCOV 256 x 8 0.23 2.60 
14.28 33.78 L3E3/E3L3 32 × 32 0.89 12.18 
7.58 23.68 L3S3/S3L3 32 x 32 0.22 4.00 
8.07 29.62 DIFFX/DIFFY 32 x 32 1.51 3.89 

11.83 36.92 DIFFY/SCOV 32 x 32 0.86 6.57 
8.46 32.77 G M A G / G D I R  32 x 32 1.81 16.13 
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5. EXPERIMENTS WITH IMAGE SET II 

Recently, Ohanian and Dubes tSJ studied the per- 
formance of four types of features: Markov Random 
Field parameters, Gabor multi-channel features, frac- 
tal-based features and co-occurrence features. They 
used four classes of images in experiments: fractal 
images, Gaussian Markov Random Field (GMRF) 
images, leather images and painted images (Fig. 3). 
Each image class contained four types of images: the 
synthetic fractal and GRMF images were generated by 
using different parameter values and the natural im- 
ages represented different types of leather or painted 
surface, respectively. With these images four 4-class 
problems and a 16-class problem were established. 
Whitney's forward selection method was used for fea- 
ture selection and a kNN (k = 9) decision rule for 
classification. The co-occurrence features generally 
outperformed other features followed by fractal fea- 
tures. 

In our study, the same set of images was used. The 
images were again corrected by mean and standard 
deviation, as described in Section 4. Like Ohanian and 
Dubes, we treated each of the four classes of images 
as a separate 4-class problem. 200 nonoverlapping 
samples of size 32 x 32 were extracted from each image 
(texture type), resulting in a classification problem of 
800 samples. Every sample was in its turn classified 
using the other 799 samples as models (3199 models in 
the 16-class problem) by applying a two-way-of-inde- 
pendence G test with the leave-one-out approach. 
A 9 -NN classification resembling the principle of 
Ohanian and Dubes was used. Additionally, the 16- 
class problem, including all 3200 nonoverlapping 
samples extracted from all 16 images was considered. 

The error rates for the four 4-class problems and the 
l 6-class problem using distributions of single features 
are summarized in Table 3. 

It can be seen that fractal images were quite easy to 
discriminate with most of the features. However, gray- 
scale invariant features LBP, SAC and SRAC did not 
perform well. This indicates that gray-scale contrast is 
important for discriminating these images. 

LBP, SRAC and SCOV performed best for GMRF 
images. The worst results for the difference histogram 
features were obtained with these images. The classifi- 
cation of leather images is somewhat more difficult. 
The excellent results obtained with DIFFY, DIFF4 
and DIFF2 are surprisingly good. The results with the 
other features are much poorer. The painted surfaces 
were also difficult for some features to discriminate. 
DIFF4, DIFF2 and DIFFY, again, achieved very low 
error rates. DIFFX, LBP and SRAC also performed 
quite well, but the results for the other features are 
much poorer. 

The difference histogram features performed best in 
the 16-class problem also. SCOV, LBP and SRAC also 
performed quite well. The poor performance of Laws' 
features is mainly caused by the difficulty of discrimi- 
nating leather and paint images with these measures. 

SCOV and SRAC performed better than Laws' 
measures, but, as expected they also had problems with 
leather and painted images. 

The classification results for pairs of features are 
presented in Table 4. The best overall performance is 
for DIFFY/SCOV, and almost as good results were 
obtained by DIFFX/DIFFY. The performance of 
GMAG/GDIR was poorest. In general, the improve- 
ment achieved with pairs of features compared with 
the best results for single features is not as significant 
for this image set as for Brodatz's textures. 

6. DISCUSSION AND CONCLUSIONS 

Most of the earlier approaches to texture classifica- 
tion quantify the texture measures by single values. 
The very good results that we obtained by using 
distributions of simple texture measures suggest that 
the distributions of feature values should be used 
instead of single values. 

The gray-level difference method achieved the best 
overall performance discriminating most of the tex- 
tures very well. It is very easy to compute, and it 
performed well even with small 16 x 16 samples, which 
make this approach very attractive for many applica- 
tions, including texture classification and segmenta- 
tion. 

The texture measures based on local binary patterns 
are also computationally extremely simple. These 
measures performed very well, especially with the 
Brodatz textures. LBP is gray-scale invariant and can 
be combined with a simple contrast measure to make it 
even more powerful. The method is rotation variant 
which is undesirable in certain applications, but it 
should be possible to derive rotation invariant ver- 
sions of LBP. 

Center-symmetric covariance features performed 
very well for some of the textures being more powerful 
than Laws' measures. Both of these approaches require 
larger sample sizes than the gray-level difference and 
LBP methods. A reason for this is that most of the 
discriminative information for these kinds of measures 
is contained in the match maxima, as shown by 
Pietik~iinen etal .  ~4~ To obtain statistically reliable 
information on the distributions of local extrema, 
quite large image windows may be needed. Covariance 
measures are computationally more complex than 
Laws' measures, but they are all rotation invariant 
while Laws' measures are not. In addition, the SRAC 
measure, which performed quite well, is invariant un- 
der any monotonic transformation including correc- 
tion by mean and standard deviation and histogram 
equalization. 

There are many applications, for example in indus- 
trial inspection and remote sensing, in which the gray- 
scale invariance of a texture measure is of great import- 
ance due to uneven illumination or great within-class 
variability. Recent results which we have obtained 
with applying texture classification to a difficult metal 
sheet inspection problem have demonstrated that the 
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Fig. 3. (a) Fractal images with fractal dimension D; (b) Gaussian Markov Random Field Images; (c)leather 
images; (d) painted surface images. 
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Table 3. Error rates for single features with Image Set II 

Feature Fractal GMRF Leather Painted 16-class 

LBP 37.75 0.00 24.12 10.75 18.16 
DIFFX 0.00 10.62 2.25 6.25 5.75 
DIFFY 0.00 10.50 0.00 2.88 3.72 
DIFF2 0.00 7.88 0.12 1.75 2.81 
DIFF4 0.00 14.50 0.00 0.88 3.69 
L3E3 1.00 6.88 23.12 40.62 33.06 
E3L3 2.00 26.50 27.25 49.25 36.09 
L3S3 0.00 7.38 39.25 50.12 31.53 
$3L3 0.00 13.25 36.38 22.00 27.22 
SCOV 0.130 3.38 28.38 31.37 16.56 
SAC 43.25 10.88 46.12 34.00 46.28 
SRAC 12.75 2.12 34.75 12.00 18.25 

Table 4. Error rates for pairs of features with Image Set II 

Features No. of bins Fractal GMRF Leather Paint 16-class 

LBP/C 256 x 8 0.00 1.75 29.62 23.12 12.38 
LBP/SCOV 256 x 8 0.00 1.25 30.38 32.62 14.97 
L3E3/E3L3 32 x 32 0.88 7.00 16.38 43.62 29.66 
L3S3/S3L3 32 x 32 0.00 0.75 11.50 15.00 11.81 
DIFFX/DIFFY 32 x 32 0.12 5.12 0.25 1.12 3.44 
DIFFY/SCOV 32 x 32 0.12 4.75 1.75 1.62 2.88 
GMAG/GDIR 32 x 32 1.88 9.38 35.25 44.12 35.79 

gray-scale invariant LBP and SRAC measures can be 
more powerful in such applications than the 'o the r  
approaches considered in this paper, its) 

The quite poor  performance of Laws' approach 
indicates that the discriminative power of these 
measures is mostly contained in the variances of the 
feature distributions which have been used in most  of 
the earlier studies. The whole distribution does not  
seem to provide much addition information. 

The use of pairs of complementary measures gen- 
erally improves the classification accuracy. This was 
particularly evident in the case of Brodatz 's textures. 
The computat ionally simple D I F F X / D I F F Y  and 
LBP/C pairs were among the best feature pairs. The 
performance of Laws' approach can also be signifi- 
cantly improved by using pairs of or thogonal  masks 
instead of single features. The gradient magni- 
tude/direction pair did not  perform as well as the other 
pairs in our experiments. 
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