
State

HTTP is a stateless protocol,

which means that once a web

server completes a request,

the connection goes away

Client Server

"Hello, server!"
1

"Hello, client!"
2

"Hello again!"
3

"Sorry, but I don't

know you"

4

One technique for

maintaining state is to use

cookies

A cookie is a bit of information

that the server can give

to a client

On every subsequent request,

the client will give that

cookie back to the server

Client Server

Request
1

Response + Cookie
2

Request + Cookie
3

Response
4

Client Server

Request + Cookie
5

Response
6

Request + Cookie
7

Response
8

The server can store any data

in a cookie (within limits),

such as user ID, preferences, etc.

Client Server

"Hello, server!"
1

"Hello, client!

Your ID is 4646"

2

"Hello again!

I'm user 4646"

3

"Hi, user 4646!"
4

Language:

Color:

Save

English v|

Red v|

Settings

Client Server

Request
1

White page in French
(default)

2

Request + form data
3

Red page in English
lang=en; color=red

4

Client Server

Request
lang=en; color=red

5

Red page in English
6

Request
lang=en; color=red

7

Red page in English
8

GET /tentang/profil-universitas HTTP/1.1
Host: ub.ac.id
Connection: keep-alive
Accept: text/html
User-Agent: Chrome/40.0.2214.115
Accept-Encoding: gzip, deflate
Accept-Language: id,en-US
Referer: http://ub.ac.id
Cookie: lang=en; color=red

So, cookies are like variables that

can be recognized by different pages

Use the setcookie() function

to send a cookie to the browser

setcookie(name[,value[,expire[,path[,domain[,secure]]]]]);

setcookie(‘userid’, ‘4646’);
setcookie(‘lang’, ‘en’);

setcookie(‘color’, ‘red’);

name is a unique name

for a particular cookie

The name must not contain

whitespace or semicolons

value is the string value

attached to this cookie

The original specification limited

the total size of a cookie to 4 KB

expire is the expiration date

for this cookie

If not specified, the browser

saves the cookie in memory:

when the browser exits,

the cookie disappears

For example, to expire the

cookie in two hours' time, pass
time() + 60 * 60 * 2

Because cookies are sent

as headers in the response,

setcookie() must be called

before any content is sent

<!DOCTYPE html>
<html>

<?php setcookie(‘userid’, 4646); ?>
<head>

...

<?php setcookie(‘userid’, 4646); ?>
<!DOCTYPE html>
<html>

<head>
...

Cookies are automatically

sent to the web server

(and received/parsed by PHP)

each time a user visits a server

Cookies sent by clients

are available through the

$_COOKIE array

The key is the cookie name,

and the value is the cookie's

value field

$lang = $_COOKIE[‘lang’];
$color = $_COOKIE[‘color’];

<?php setcookie(‘name’, ‘Supono’); ?>
<!DOCTYPE html>
<html>
<head></head>
<body>

<h1>Cookies set!</h1>
Check

</body></html>

Write this to set_cookie.php!

<!DOCTYPE html>
<html>
<head></head>
<body>

<h1>Hello,
<?php

echo isset($_COOKIE[‘name’]) ?
$_COOKIE[‘name’] :
‘guest’;

?>
!</h1>
Set
Remove

</body></html>

Write this to read_cookie.php!

<?php setcookie(‘name’, ’’); ?>
<!DOCTYPE html>
<html>
<head></head>
<body>

<h1>Cookies removed!</h1>
Check

</body>
</html>

Write this to remove_cookie.php!

Sessions

are similar to

cookies

While cookie data are stored

on the client, session data are

stored on the server

It means clients do not have

access to the session data

It also means that, unlike cookies,

session data are not included

in HTTP requests

Client Server

Request
1

White page in French

(default) + ID 9876

2

Request + form

+ ID 9876

3

Red page in English
4

Client Server

Request + ID 9876
5

Red page in English
6

Request + ID 9876
7

Red page in English
8

ID preferences

9876 lang=en; color=red

9877 lang=id; color=yellow

9878 lang=fr; color=green

Each first-time visitor is issued

a unique session ID

By default, the session ID is stored

in a cookie called PHPSESSID

Since session data are stored on

the server, they can be any size

we want

Registered variables are loaded

into the associative array $_SESSION

by the session_start() function

session_start();
$_SESSION[‘hits’] = $_SESSION[‘hits’] + 1;

To end a session,

call session_destroy()

By default, PHP session ID cookies

expire when the browser closes

Sessions brings some

advantages over cookies:

(1) Session can save large

amount of data

(2) Since cookies are sent

included in HTTP headers,

sessions can save bandwidth

(3) Session data is much

more secure

